

Mobility vision PC & LCV

Energy meeting Mobility.

Executive Summary

- : BEVs with an electric range of >200 km are too expensive, too heavy, and have an over-designed battery pack for over 95% of the duty cycles.
- : A fleet scenario with direct transition to pure BEVs with high range prevents reaching the target climate change objectives due to lack of sales & limited battery capacity.
- The combination of BEV and on-board charging:
 - •Reduces the battery pack by 75%
 - Enables 95% of all duty cycles to be electric
 - Provides full range with fast refilling times in current infrastructure
 - Shares the battery production capacity with 4x more cars
 - Enables higher sales resulting in fast implementation of ultra-low CO₂ cars to realize climate change objectives
- Re-thinking EVs ("Omtanke") truly delivers the most cost-efficient, lowest TCO and lowest CO₂ solution for automotive

Average daily trip distance in EU

New and Running fleet CO2 Emissions [g/km]

RFFV

No space for ICE & exhaust

Outline

: CO₂ objectives, contributions & policies

: Must-plug-in LEV & their impact on fleet CO₂

: Must-plug-in PHEV vs. REEV

: Micro gas turbine REEV

: Conclusions

Paris Agreement: CO₂ pathways towards +1,5°C and +2°C in 2100

- +1,5°C: 70% reduction of CO₂e¹ emissions by 2050
- +2,0°C: 50% reduction of CO₂e¹ emissions by 2050
- EU Green deal : climate neutral by 2050 (going further than the rest of the world)

¹ CO₂e: CO₂ equivalents accounting for global warming potential: 35GT CO₂, 8Gt eq. CH₄, 3Gt eq. N₂O in 2010 Source: Oxford University https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

Annual CO2 emissions by world region

- Asia, North America & Europe emit the most
- Historically, USA, EU27+UK and China contributed the most
- Developing countries have limited contribution
- EU Green deal ambitions may help compensate for developing countries

CO₂ emissions from transport and other sectors

- Transport is responsible for 20% of global CO₂
 emissions
- Transport includes road, rail, aviation & waterways.
- EU: 28% due to transport 1Gt
 - 72% from road = 0,7 Gt
 - O,4 Gt PC + 0,1 Gt LCV
 - PC fleet EU27 + UK
 - 268 million vehicles
 - Average age 10,8 years
 - Average growth 2% over past 5 years
 - Average 13.000 km/car/year

CO₂ policy making in Europe

Transport is targeted more than other sectors.

Conclusions

- : 1,5°C 2°C global warming pathways require 50-70% CO2 reduction by 2050
- : Significant CO2 contribution from developed regions China, USA & EU
- Transport sector responsible for 20% of CO2 emissions globally
- Road transport responsible for 70% total transport CO2 emissions
- EU Green Deal = Carbon neutral by 2050 (more ambitious than the rest of the world)
- : Transport legislation is limited to:
 - New fleet; delayed impact due to average car age of approx. 11 years
 - Tank-to-Wheel
- : Tank-to-Wheel more penalized than Well-to-Tank

Outline

: CO₂ objectives, contributions & policies

: Must-plug-in LEV & their impact on fleet CO₂

: Must-plug-in PHEV vs. REEV

: Micro gas turbine REEV

: Conclusions

EU27 + UK

How European cars are used

Average daily trip distance

Utility factor of properly used plug-in vehicles

- : 80% of cars drive less than av. 65 km/day
- 95% of cars dive less than av. 100km/day
- Plug-in Low Emission Vehicles (LEV) drive mainly electric when properly used; "must-plug-in"
- LEV with 80 km electric range allows for 87% of all kilometers to be electric (at zero emissions)
- LEV with 150 km electric range allows 95% of all kilometers to be electric (at zero emissions)

Must-plug-in Low Emission Vehicles

- : Must-plug-in daily
- Primarily a BEV (Battery Electric Vehicle); primary fuel = electricity
- Exceptional use of range extender; secondary fuel can be hydrocarbon (fossil/bio/synthetic) or hydrogen

Consumer vs. inhabitant expectations

Must-plug-in LEV (PHEV and REEV) offer the best trade-off

Battery and

electricity

production

CO₂

CO2

©2

@

EU27 + UK

Battery production capacity limitations

Source: McKinsey Center for Future Mobility, September 2019

EU Battery production capacity [GWh]

- Forecast of battery production capacity in EU based on announcements until 2025
- **:** 250 GWh in 2025

- Extrapolated capacity increase towards 2030 and 2050
- **:** 450 GWh in 2030
- 1200 GWh in 2050

Source: McKinsey – Reboost: A comprehensive view on the changing powertrain component market and how suppliers can succeed.

Optimal use of battery production capacity

EU27 + UK

- Steeper CO₂ reduction well below target by using all available batteries in PHEV/REEV
- CO₂ target not reached by using all available batteries in BEV

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Year

20

Optimal use of battery production capacity

EU27 + UK

- Only PHEV/REEV scenario enables CO₂ neutrality for entire running fleet towards 2050
- In the BEV scenario, CO₂ reduction of entire running fleet is delayed by 7 years, resulting in 2 Gt of extra CO₂ emissions

**** * EU * * * *

2021 update - Battery production capacity

- Forecast of battery production capacity in EU based on announcements until 2025
- **:** 450 GWh in 2025
- 700+ GWh in 2030

EU27 + UK

2021 update - Battery production capacity

- Steeper CO₂ reduction well below target by using all available batteries in PHEV/REEV
- CO₂ target not reached by using all available batteries in BEV

Outline

: CO₂ objectives, contributions & policies

: Must-plug-in LEV & their impact on fleet CO₂

: Must-plug-in PHEV vs. REEV

: Micro gas turbine REEV

: Conclusions

: Must-plug-in PHEV vs. REEV

Must-plug-in LEV: PHEV or REEV?

Choice depends on integration within baseline vehicle platform

Outline

: CO₂ objectives, contributions & policies

: Must-plug-in LEV & their impact on fleet CO₂

: Must-plug-in PHEV vs. REEV

: Micro gas turbine REEV

: Conclusions

Micro Gas Turbine Range Extender (MiTRE)

Mitre EV

Micro gas turbine range extender

smaller battery

Thermal mgt

- 35 kW 400V-700V Catalytic Generator
- Can be adapted to different fuels in transition to CO2 neutral fuels
- Near-zero emissions (Euro7) without aftertreatment
- Silent & Light weight (approx. 50 kg)
- Compact: 80 ltr. Bounding box (<40 kWh battery space)
- 30% efficiency thanks to BOSAL recuperator
- Smaller cooling circuit (8 kW) than for ICE
- : No oil cooling / lubrication
- Low cost & low maintenance

<u>Mi</u>cro Gas <u>T</u>urbine <u>R</u>ange <u>E</u>xtender demonstrator

Conversion of Ford Transit PHEV to MiTRE

Pure EV Range (km) 56 1 Pure EV Driving (%) 35 8 Total Mileage (km) 240,000 240	
Pure EV Driving (%) 35 Total Mileage (km) 240,000	demo
Total Mileage (km) 240,000 240	34
	34
Pure EV Mileage (km) 85 000 201	,000
Ture Ly Willeage (Kill)	,600
CO ₂ Emissions (g/km) 70	10
Total CO ₂ Emissions (t) 10.85	54
Weight (kg) Ref Ref -	

Micro Gas Turbine Range Extender (MiTRE)

Investment cost and TCO comparison

Both investment and TCO are better for REEV than for large range BEV

- Significant investment cost benefit for REEV with 100-200 km electric range compared to BEV with 400 km electric range
- Benefit decrease due to decreasing battery cost by 2040

- TCO for REEV and BEV with smaller electric range comparable to gasoline & diesel
- BEV 400 km and H₂ fuel cell have a higher TCO

Life cycle CO₂ emissions (g/km & ton)

Vehicle	Electric range	Battery capacity
	[km]	[kWh]
REEV100 - Diesel	100	24
REEV240 - Diesel	240	57
REEV100 - CNG	100	24
REEV240 - CNG	240	57
BEV200	200	49
BEV300	300	76
BEV400	400	105
ICE gasoline	0	0
ICE Diesel	0	0

- Life cycle CO₂ is lowest for BEV with small electric range (200 km)
- Range Extended EVs better than BEV with large electric range
- Life cycle CO₂ for REEV drops further when using biofuel / synthetic fuel

Outline

: CO₂ objectives, contributions & policies

: Must-plug-in LEV & their impact on fleet CO₂

: Must-plug-in PHEV vs. REEV

: Micro gas turbine REEV

: Conclusions

: Conclusions

: Must-plug-in PHEV and REEV are optimal trade-off to:

- Reduce Tank-to-Wheel CO2 emissions for both new & entire running fleet more rapidly towards 2030-2050.
- Ensure CO2 neutrality of entire running fleet by 2050
- Minimize life cycle CO2 emissions (Well-to-Thank & Thank-to-Wheel)
- Minimize investment cost and TCO for faster consumer acceptance
- Secure trip freedom outside of cities for faster consumer acceptance (Eliminate range anxiety)
- Improve clean air rapidly / Reduction of pollutants of total fleet
- Enable pure electric driving in cities
- Enable focus of charging infrastructure investments to cities, benefitting from existing infrastructure outside the cities
- Make transition to CO2 neutral energy (biofuel / synthetic fuel / hydrogen)

: BEVs with a range of >200 km should be discouraged

